Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.02.02.24301686

ABSTRACT

Dysregulated innate immune responses contribute to multisystem inflammatory syndrome in children (MIS-C), characterized by gastrointestinal, mucocutaneous, and/or cardiovascular injury occurring weeks after SARS-CoV-2 exposure. To investigate innate immune functions in MIS-C, we stimulated ex vivo peripheral blood cells from MIS-C patients with agonists of Toll-like receptors (TLR), key innate immune response initiators. We found severely dampened cytokine responses and elevated gene expression of negative regulators of TLR signaling. Increased plasma levels of zonulin, a gut leakage marker, were also detected. These effects were also observed in children enrolled months after MIS-C recovery. Moreover, cells from MIS-C children carrying rare genetic variants of lysosomal trafficking regulator (LYST) were less refractory to TLR stimulation and exhibited lysosomal and mitochondrial abnormalities with altered energy metabolism. Our results strongly suggest that MIS-C hyperinflammation and/or excessive or prolonged stimulation with gut-originated TLR ligands drive immune cells to a lasting refractory state. TLR hyporesponsiveness is likely beneficial, as suggested by excess lymphopenia among rare LYST variant carriers. Our findings point to cellular mechanisms underlying TLR hyporesponsiveness; identify genetic determinants that may explain the MIS-C clinical spectrum; suggest potential associations between innate refractory states and long COVID; and highlight the need to monitor long-term consequences of MIS-C.


Subject(s)
Mitochondrial Diseases , Cryopyrin-Associated Periodic Syndromes , Cardiovascular Diseases , Protein-Energy Malnutrition , Lymphopenia
2.
authorea preprints; 2024.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.170668276.63198537.v1

ABSTRACT

Electronic repeat dispensing (eRD) has been part of the community pharmacy contact since 2005 and a requirement in the General Medical Services contract since 2019. eRD allows the prescribing of medicines for stable long-term conditions for a defined period without authorisation, consultation, by prescribing healthcare professionals each time. NHS England highlights benefits of eRD as increased efficiency in general practice of 2.7 million hours annually if 80% of all repeat prescriptions are issued as eRD. Despite clear benefits to patients, community pharmacies and general practices, the uptake of eRD remains low and variable across general practices in West Yorkshire. The current COVID-19 pandemic has placed huge strains on repeat prescribing systems in general practice. The aim of the project was to investigate the impact of COVID-19 on eRD in general practice and understand the key enablers to its uptake. In conclusion, two main enabling factors identified within this study that may lead to improved implementation and uptake of eRD. These are integrating eRD into normal routine workflows where prescribing authorisation is concerned and nominating an internal eRD champion. Utilising eRD in the respective practices should be considered due to potential efficiency gains and the increase in average eRD utilisation observed in the study participating general practices across West Yorkshire was from 7.2% average uptake in March 2020 to 10.4% November 2020. The stated benefits of eRD by NHS England of 2.7 million hours per annum predates the roll of electronic transmission of prescriptions suggesting further research is needed.


Subject(s)
COVID-19 , Mitochondrial Diseases
3.
researchsquare; 2024.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3896294.v2

ABSTRACT

Little is known about specific viral factors responsible for the pathogenesis and pathophysiology of long COVID. Here we describe a conditional knock-in (cKI) mouse strain inducibly expressing Nsp12, an essential component of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Induction of Nsp12 translation was dependent on co-treatment with inhibitors of the integrated stress response in vitro and in vivo. We show that Nsp12 has a biologically significant link to mitochondrial dysfunction in vivo. In vitro, ectopic Nsp12 expression suppressed mitochondrial function in primary lung epithelial cells isolated from Nsp12 cKI mice. This functionality was physiologically relevant because, although ectopic Nsp12 expression in mouse lungs did not induce pneumonia, it did decrease mitochondrial activity in the hearts of Nsp12 cKI mice over the short and long terms. Administration in vivo of an RdRp inhibitor, EIDD-2801, restored mitochondrial function in cardiomyocytes of Nsp12 cKI mice. Our data demonstrate that SARS-CoV-2 RdRp activity in the lungs leads to cardiac mitochondrial dysfunction in vivo, generating a phenotype resembling aspects of long COVID in humans. Therapeutic targeting of SARS-CoV-2 RdRp may thus represent a novel means of preventing or mitigating intense fatigue and/or myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)-like disease caused by mitochondrial dysfunction in long COVID patients.


Subject(s)
Mitochondrial Diseases , Pneumonia , Fatigue Syndrome, Chronic , RNA Virus Infections , Heart Diseases
4.
preprints.org; 2023.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202312.0791.v1

ABSTRACT

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a frequent, debilitating and still enigmatic disease. There is a broad overlap in the symptomatology of ME/CFS and the Post-COVID Syndrome (PCS). A fraction of the PCS patients develops the full clinical picture of ME/CFS. New observations in microvessels and blood from patients suffering from PCS have appeared and include microclots and malformed pathological blood cells. Capillary blood flow is impaired not only by pathological blood components but also by prothrombotic changes in the vascular wall, endothelial dysfunction, and expression of adhesion molecules in the capillaries. These disturbances can finally cause a low capillary flow and even capillary stasis. A low cardiac stroke volume due to hypovolemia and the inability of the capacitance vessels to adequately constrict to deliver the necessary cardiac preload generate an unfavorable low precapillary perfusion pressure. Furthermore, a predominance of vasoconstrictor over vasodilator influences exists, in which sympathetic hyperactivity and endothelial dysfunction play a strong role, causing constriction of resistance vessels and of precapillary sphincters which leads to a fall in capillary pressure behind the sphincters. The interaction of these two precapillary cardiovascular mechanisms causing a low capillary perfusion pressure is hemodynamically highly unfavorable in the presence of a primary capillary stasis already caused by the pathological blood components and their interaction with the capillary wall, to severely impair organ perfusion. The detrimental coincidence of the microcirculatory with the precapillary cardiovascular disturbances may constitute the key disturbance of the Post-COVID-19 syndrome and finally lead to ME/CFS in pre-disposed patients because the interaction causes a particular kind of perfusion disturbance - capillary ischemia-reperfusion - which has a high potential of causing mitochondrial dysfunction by inducing sodium- and calcium-overload in skeletal muscles. The latter in turns worsens the vascular situation by the generation of reactive oxygen species to close a vicious cycle from which the patient can hardly escape.


Subject(s)
Mitochondrial Diseases , Sphincter of Oddi Dysfunction , Hypovolemia , Cardiovascular Diseases , Fatigue Syndrome, Chronic , Hyperkinesis , Ischemia , COVID-19 , Stroke
5.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.10.08.561395

ABSTRACT

Lethal COVID-19 causation most often invokes classic cytokine storm and attendant excessive immune signaling. We re-visit this question using RNA sequencing in nasopharyngeal and 40 autopsy samples from both COVID-19-positive and negative individuals. In nasal swabs, the top 100 genes expressed, and significantly correlated with COVID-19 viral load, indeed include many canonical innate immune genes. However, 22 much less studied \"non-canonical\" genes are found and despite the absence of viral transcripts, subsets of these are upregulated in heart, lung, kidney, and liver, but not mediastinal lymph nodes. An important regulatory potential emerges for the non-canonical genes for over-activating the renin-angiotensin-activation-system (RAAS) pathway, resembling this phenomenon in hereditary angioedema (HAE) and its overlapping multiple features with lethal COVID-19 infections. Specifically, RAAS overactivation links increased fibrin deposition, leaky vessels, thrombotic tendency, and initiating the PANoptosis death pathway, as suggested in heart, lung, and especially mediastinal lymph nodes, and a tight association mitochondrial dysfunction linked to immune responses. For mediastinal lymph nodes, immunohistochemistry studies correlate showing abnormal architecture, excess fibrin and collagen deposition, and pathogenic fibroblasts. Further, our findings overlap these for COVID-19 infected hamsters, C57BL/6 and BALB/c mouse models, and importantly peripheral blood mononuclear cell (PBMC) and whole blood samples from COVID-19 patients infected with early alpha but also later COVID-19 omicron strains. We thus present cytokine storm in lethal COVID-19 disease as an interplay between upstream immune gene signaling producing downstream RAAS overactivation with resultant severe organ damage, especially compromising mediastinal lymph node function.


Subject(s)
Mitochondrial Diseases , Angioedemas, Hereditary , COVID-19 , Inflammation
7.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.06.23.23291827

ABSTRACT

Myalgic Encephalomyelitis/ Chronic Fatigue syndrome (ME/CFS) is a complex, debilitating, long-term illness without a diagnostic biomarker. ME/CFS patients share overlapping symptoms with long COVID patients, an observation which has strengthened the infectious origin hypothesis of ME/CFS. However, the exact sequence of events leading to disease development is largely unknown for both clinical conditions. Here we show antibody response to herpesvirus dUTPases, particularly to that of Epstein-Barr virus (EBV) and HSV-1, increased circulating fibronectin (FN1) levels in serum and depletion of natural IgM against fibronectin ((n)IgM-FN1) are common factors for both severe ME/CFS and long COVID. We provide evidence for herpesvirus dUTPases-mediated alterations in host cell cytoskeleton, mitochondrial dysfunction and OXPHOS. Our data show altered active immune complexes, immunoglobulin-mediated mitochondrial fragmentation as well as adaptive IgM production in ME/CFS patients. Our findings provide mechanistic insight into both ME/CFS and long COVID development. Finding of increased circulating FN1 and depletion of (n)IgM-FN1 as a biomarker for the severity of both ME/CFS and long COVID has an immediate implication in diagnostics and development of treatment modalities.


Subject(s)
Mitochondrial Diseases , Epstein-Barr Virus Infections , Fatigue Syndrome, Chronic
8.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.06.23.546214

ABSTRACT

COVID-19 is associated with diverse neurological abnormalities, which predict poor outcome in patients. However, the mechanisms whereby infection-induced inflammation could affect complex neuropathologies in COVID-19 are unclear. We hypothesized that microglia, the resident immune cells of brain, are centrally involved in this process. To study this, we developed an autopsy platform allowing the integration of molecular anatomy-, protein- and mRNA data sets in post-mortem mirror blocks of brain and peripheral organ samples from COVID-19 cases. Nanoscale microscopy, single-cell RNA sequencing and analysis of inflammatory and metabolic signatures revealed distinct mechanisms of microglial dysfunction associated with cerebral SARS-CoV-2 infection. We observed focal loss of microglial P2Y12R at sites of virus-associated vascular inflammation together with dysregulated microglia-vascular-astrocyte interactions, Cx3Cr1-fractalkine axis deficits and mitochondrial failure in severely affected medullary autonomic nuclei and other brain areas. Microglial dysfunction occurs at sites of excessive synapse- and myelin phagocytosis and loss of glutamatergic terminals. While central and systemic viral load is strongly linked in individual patients, the regionally heterogenous microglial reactivity in the brain correlated with the extent of central and systemic inflammation related to IL-1 / IL-6 via virus-sensing pattern recognition receptors (PRRs) and inflammasome activation pathways. Thus, SARS-CoV-2-induced central and systemic inflammation might lead to a primarily glio-vascular failure in the brain, which could be a common contributor to diverse COVID-19-related neuropathologies.


Subject(s)
Mitochondrial Diseases , Neurologic Manifestations , Sexual Dysfunction, Physiological , Severe Acute Respiratory Syndrome , Vascular Diseases , COVID-19 , Inflammation
9.
Int J Mol Sci ; 24(9)2023 Apr 28.
Article in English | MEDLINE | ID: covidwho-2313603

ABSTRACT

Patients who have recovered from coronavirus disease 2019 (COVID-19) infection may experience chronic fatigue when exercising, despite no obvious heart or lung abnormalities. The present lack of effective treatments makes managing long COVID a major challenge. One of the underlying mechanisms of long COVID may be mitochondrial dysfunction. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can alter the mitochondria responsible for energy production in cells. This alteration leads to mitochondrial dysfunction which, in turn, increases oxidative stress. Ultimately, this results in a loss of mitochondrial integrity and cell death. Moreover, viral proteins can bind to mitochondrial complexes, disrupting mitochondrial function and causing the immune cells to over-react. This over-reaction leads to inflammation and potentially long COVID symptoms. It is important to note that the roles of mitochondrial damage and inflammatory responses caused by SARS-CoV-2 in the development of long COVID are still being elucidated. Targeting mitochondrial function may provide promising new clinical approaches for long-COVID patients; however, further studies are needed to evaluate the safety and efficacy of such approaches.


Subject(s)
COVID-19 , Mitochondrial Diseases , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Inflammation
10.
preprints.org; 2023.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202305.1487.v1

ABSTRACT

Long COVID (LC) encompasses a constellation of long-term symptoms experienced by at least 10% of people after the initial SARS-CoV-2 infection, and so far has affected about 65 million people. The etiology of LC remains unclear; however, many pathophysiological pathways may be involved, including viral persistence; chronic, low grade inflammatory response; immune dysregulation and defective immune response; reactivation of latent viruses; autoimmunity; persistent endothelial dysfunction and coagulopathy; gut dysbiosis; hormonal dysregulation, mitochondrial dysfunction; and autonomic nervous system dysfunction. There are no specific tests for the diagnosis of LC, and clinical features including laboratory findings and biomarkers may not specifically relate to LC. Therefore, it is of paramount importance to develop and validate biomarkers that can be employed for the prediction, diagnosis and prognosis of LC and its therapeutic response. Promising candidate biomarkers that are found in some patients are markers of systemic inflammation including acute phase proteins, cytokines and chemokines; biomarkers reflecting SARS-CoV-2 persistence, reactivation of herpesviruses and immune dysregulation; biomarkers of endotheliopathy, coagulation and fibrinolysis; microbiota alterations; diverse proteins and metabolites; hormonal and metabolic biomarkers; as well as cerebrospinal fluid biomarkers. At present, there are only two reviews summarizing relevant biomarkers; however, they do not cover the entire umbrella of current biomarkers or their link to etiopathogenetic mechanisms, and the diagnostic work-up in a comprehensive manner. Herein, we aim to appraise and synopsize the available evidence on the typical laboratory manifestations and candidate biomarkers of LC, their classification based on main LC symptomatology in the frame of the epidemiological and pathogenetic aspects of the syndrome, and furthermore assess limitations and challenges as well as potential implications in candidate therapeutic interventions.


Subject(s)
Mitochondrial Diseases , Blood Coagulation Disorders , Dysbiosis , Nervous System Diseases , Blood Coagulation Disorders, Inherited , COVID-19 , Inflammation
11.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.05.03.23289456

ABSTRACT

Background: One of the major challenges currently faced by global health systems is the prolonged COVID-19 syndrome (also known as long COVID) which has emerged as a consequence of the SARS-CoV-2 epidemic. The World Health Organization (WHO) recognized long COVID as a distinct clinical entity in 2021. It is estimated that at least 30% of patients who have had COVID-19 will develop long COVID. This has put a tremendous strain on still-overstretched healthcare systems around the world. Methods: In this study, our goal was to assess the plasma metabolome in a total of 108 samples collected from healthy controls, COVID-19 patients, and long COVID patients recruited in Mexico between 2020 and 2022. A targeted metabolomics approach using a combination of LC-MS/MS and FIA MS/MS was performed to quantify 108 metabolites. IL-17 and leptin concentrations were measured in long COVID patients by immunoenzymatic assay. Results: The comparison of paired COVID-19/post-COVID-19 samples revealed 53 metabolites that were statistically different (FDR < 0.05). Compared to controls, 29 metabolites remained dysregulated even after two years. Notably, glucose, kynurenine, and certain acylcarnitines continued to exhibit altered concentrations similar to the COVID-19 phase, while sphingomyelins and long saturated and monounsaturated LysoPCs, phenylalanine, butyric acid, and propionic acid levels normalized. Post-COVID-19 patients displayed a heterogeneous metabolic profile, with some showing no symptoms while others exhibiting a variable number of symptoms. Lactic acid, lactate/pyruvate ratio, ornithine/citrulline ratio, sarcosine, and arginine were identified as the most relevant metabolites for distinguishing patients with more complicated long COVID evolution. Additionally, IL-17 levels were significantly increased in these patients. Conclusions: Mitochondrial dysfunction, redox state imbalance, impaired energy metabolism, and chronic immune dysregulation are likely to be the main hallmarks of long COVID even two years after acute COVID-19 infection.


Subject(s)
Mitochondrial Diseases , Multiple Sclerosis , Protein-Energy Malnutrition , Chronobiology Disorders , COVID-19
12.
Pediatr Int ; 64(1): e15317, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-2251024

ABSTRACT

BACKGROUND: Mitochondrial fatty acid oxidation disorders (FAODs) cause impairment in energy metabolism and can lead to a spectrum of cardiac pathologies including cardiomyopathy and arrhythmias. The frequency of underlying cardiac pathologies and the response to recommended treatment in FAODs was investigated. METHODS: Sixty-eight children (35 males, 33 females) with the diagnosis of a FAOD were included in the study. Cardiac function was evaluated with 12-lead standard electrocardiography, echocardiography, and 24 h Holter monitoring. RESULTS: Forty-five patients (66%) were diagnosed after disease symptoms developed and 23 patients (34%) were diagnosed in the pre-symptomatic period. Among symptomatic patients (n: 45), cardiovascular findings were detected in 18 (40%) patients, including cardiomyopathy in 14 (31.1%) and conduction abnormalities in 4 (8.8%) patients. Cardiac symptoms were more frequently detected in primary systemic carnitine deficiency (57.1%). Patients with multiple acyl-CoA dehydrogenase, long-chain 3-hydroxyacyl-CoA dehydrogenase, and mitochondrial trifunctional protein deficiencies also had an increased frequency of cardiac symptoms. Patients with medium-chain acyl-CoA dehydrogenase, very long-chain acyl-CoA dehydrogenase, and carnitine palmitoyltransferase I deficiencies had a lower prevalence of cardiac symptoms both during admission and during clinical follow up. Cardiomyopathy resolved completely in 8/14 (57%) patients and partially in 2/14 (14.3%) patients with treatment. Two patients with cardiomyopathy died in the newborn period; cardiomyopathy persisted in 1 (7.1%) patient with very long-chain acyl-CoA dehydrogenase deficiency. CONCLUSION: Early diagnosis, treatment and follow up made a significant contribution to the improvement of cardiac symptoms of patients with FAODs.


Subject(s)
Cardiomyopathies , Lipid Metabolism, Inborn Errors , Mitochondrial Diseases , Child , Infant, Newborn , Male , Female , Humans , Lipid Metabolism, Inborn Errors/diagnosis , Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Acyl-CoA Dehydrogenase , Mitochondrial Diseases/diagnosis , Cardiomyopathies/diagnosis , Fatty Acids , Carnitine , Oxidation-Reduction
13.
preprints.org; 2022.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202212.0296.v1

ABSTRACT

The article describes how atherosclerosis and coronavirus disease 19 (COVID-19) may affect each other. The features of this comorbid pathogenesis at various levels (vascular, cellular and molecular) are considered. A bidirectional influence of these conditions is described: the presence of cardiovascular diseases affects different individual susceptibility to viral infection. In turn, SARS-CoV-2 can have a negative effect on the endothelium and cardiomyocytes, causing blood clotting, secretion of pro-inflammatory cytokines, and thus exacerbating the development of atherosclerosis. In addition to the established entry into cells via ACE2 принимая во внимание его влияние на, other mechanisms of SARS-CoV-2 entry are currently under investigation, for example, through CD147. Pathogenesis of comorbidity can be determined by the influence of the virus on various links which are meaningful for atherogenesis: generation of oxidized forms of LDL, launch of a cytokine storm, damage to the endothelial glycocalyx, and mitochondrial injury. The transformation of a stable plaque into an unstable one plays an important role in the pathogenesis of atherosclerosis complications and can be triggered by COVID-19. The impact of SARS-CoV-2 on large vessels such as aorta is more complex than previously thought considering its impact on vasa vasorum. Current information on the mutual influence of the medicines used in the treatment of atherosclerosis and acute COVID-19 is briefly summarized


Subject(s)
Coronavirus Infections , Mitochondrial Diseases , Atherosclerosis , Cardiovascular Diseases , Severe Acute Respiratory Syndrome , Virus Diseases , COVID-19
14.
Clin Transl Med ; 12(11): e1100, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2103516

ABSTRACT

BACKGROUND: Viral infection is a major cause of morbidity in children with mitochondrial disease (MtD). As a result, families with children with MtD are highly adherent to risk mitigation behaviours (RMBs) advised by the Centers for Disease Control and Prevention during the COVID-19 pandemic that can modulate infection risk. METHODS: Deep serologic phenotyping of viral infections was performed via home-based sampling by combining SARS-CoV-2 serologic testing and phage display immunoprecipitation and sequencing. Samples were collected approximately 1 year apart (October 2020 to April 2021 and October 2021 to March 2022) on households containing a child with MtD. RESULTS: In contrast to our first collection in 2020-2021, SARS-CoV-2 antibody profiles for all participants in 2021-2022 were marked by greater isotype diversity and the appearance of neutralizing antibodies. Besides SARS-CoV-2, households (N = 15) were exposed to >38 different respiratory and gastrointestinal viruses during the study, averaging five viral infections per child with MtD. Regarding clinical outcomes, children with MtD (N = 17) experienced 34 episodes of illness resulting in 6 hospitalizations, with some children experiencing multiple episodes. Neurologic events following illness were recorded in five patients. Infections were identified via clinical testing in only seven cases. Viral exposome profiles were consistent with clinical testing and even identified infections not captured by clinical testing. CONCLUSIONS: Despite reported adherence to RMBs during the COVID-19 pandemic by families with a child with MtD, viral infection was pervasive. Not all infections resulted in illness in the child with MtD, suggesting that some were subclinical or asymptomatic. However, selected children with MtD did experience neurologic events. Our studies emphasize that viral infections are inexorable, emphasizing the need for further understanding of host-pathogen interactions through broad serologic surveillance.


Subject(s)
COVID-19 , Exposome , Mitochondrial Diseases , Virus Diseases , United States , Child , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics
15.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2302489.v1

ABSTRACT

Background Hyperuricemia, pulmonary hypertension, renal failure, and alkaline intoxication syndrome (HUPRA syndrome) is a rare autosomal recessive mitochondrial disease with prevalence of less than one in a million. Due to mutations in the mitochondrial SARS enzyme encoding seryl-tRNA synthetase on chromosome 19 (19q13.2). Case–Diagnosis/Treatment We investigated two Palestinian girls from the same village presented with progressive renal failure in infancy were diagnosed with this multisystemic disease. presented with atypical clinical manifestations of HUPRA syndrome include leukopenia, anemia, salt wasting resulting in hyponatremia and hypochloremia, renal failure with elevated blood lactate, marked hyperuricemia, hypercholesterolemia and hypertriglyceridemia but  without  pulmonary hypertension or alkaline intoxication that distinguish them from the rest of the usual cases, instead they showed acidosis in routine follow up. By using single exome sequencing analysis, we identified a two homozygous pathogenic mutation c.1175A>G (p.D392G), c.1169A>G (D390G) in SARS2 gene. This sequence identified a new variant mutation of HUPRA syndrome c.1175A>G (p.D392G) with atypical presentation, that will be added to the literature. Conclusion SARS2 gene with pathogenic homozygous mutation variants were detected in our two patients c.1175A>G (p.D392G), c.1169A>G (D390G) in exon 13, with atypical clinical manifestations of HUPRA syndrome, expanding the spectrum of SARS2 pathogenic variants with its characteristic findings, describing the differences in clinical manifestations between homozygous and compound heterozygous mutations.


Subject(s)
Mitochondrial Diseases , Alcoholic Intoxication , Hypertension, Pulmonary , Leukopenia , Neoplastic Syndromes, Hereditary , Renal Insufficiency , Hypercholesterolemia , Hyperuricemia , Acidosis , Anemia , Hyponatremia , Hypertriglyceridemia , Disease
16.
Res Dev Disabil ; 131: 104346, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2042114

ABSTRACT

BACKGROUND: Children with developmental disabilities are vulnerable to morbidity associated with COVID-19. AIMS: To understand attitudes toward routine childhood vaccinations versus the COVID-19 vaccine in a population of families affected by mitochondrial disease (MtD), a form of developmental disability. METHODS AND PROCEDURES: An online survey was administered via several advocacy groups for children with MtD. OUTCOMES AND RESULT: Eighty-six percent of families reported being up to date with the childhood vaccine schedule and seventy percent reported that their affected child receives the annual flu shot. However, only fifty percent reported that the benefits of the COVID-19 vaccine outweighed the risk for their affected child. One quarter of families expressed concern that their child may become sick or deteriorate after the COVID-19 vaccine. In comparison to other routine childhood vaccines, families expressed less confidence in the COVID-19 vaccine. CONCLUSIONS AND IMPLICATIONS: Families affected by this population of developmental disabilities are more comfortable with the vaccines included in the routine childhood immunization schedule than with the newly introduced COVID-19 vaccine, even despite this group's vulnerability.


Subject(s)
COVID-19 , Mitochondrial Diseases , Vaccines , Child , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Attitude , Mitochondrial Diseases/prevention & control
17.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.10.22277939

ABSTRACT

Acute respiratory distress syndrome (ARDS), a life-threatening condition during critical illness, is a common complication of COVID-19. It can originate from various disease etiologies, including severe infections, major injury, or inhalation of irritants. ARDS poses substantial clinical challenges due to a lack of etiology-specific therapies, multisystem involvement, and heterogeneous, poor patient outcomes. A molecular comparison of ARDS groups holds the potential to reveal common and distinct mechanisms underlying ARDS pathogenesis. In this study, we performed a comparative analysis of urine-based metabolomics and proteomics profiles from COVID-19 ARDS patients (n = 42) and bacterial sepsis-induced ARDS patients (n = 17). The comparison of these ARDS etiologies identified 150 metabolites and 70 proteins that were differentially abundant between the two groups. Based on these findings, we interrogated the interplay of cell adhesion/extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis through a multi-omic network approach. Moreover, we identified a proteomic signature associated with mortality in COVID-19 ARDS patients, which contained several proteins that had previously been implicated in clinical manifestations frequently linked with ARDS pathogenesis. In summary, our results provide evidence for significant molecular differences in ARDS patients from different etiologies and a potential synergy of extracellular matrix molecules, inflammation, and mitochondrial dysfunction in ARDS pathogenesis. The proteomic mortality signature should be further investigated in future studies to develop prediction models for COVID-19 patient outcomes.


Subject(s)
Mitochondrial Diseases , Respiratory Distress Syndrome , Sepsis , Epilepsy, Tonic-Clonic , COVID-19 , Inflammation
18.
Methods Mol Biol ; 2511: 355-365, 2022.
Article in English | MEDLINE | ID: covidwho-1941389

ABSTRACT

Coenzyme Q10 (CoQ10) plays an essential electron carrier role in the mitochondrial electron transfer chain (ETC) as well as being a potent antioxidant and influencing inflammatory mediators. In view of these functions, the reason why certain individuals may be more susceptible to the severe disease or long-term complications (long COVID) of COVID-19 infection may be associated with an underlying deficit in cellular CoQ10 status. Thus, our group has outlined an analytical method for the determination of cellular CoQ10 status using HPLC linked UV detection at 275 nm. This method has been utilized in patient tissue samples to investigate evidence of a CoQ10 deficiency and thus may have potential in determining the possible susceptibility of individuals to severe disease associated with COVID-19 infection or to long COVID.


Subject(s)
COVID-19 , Ubiquinone , COVID-19/complications , COVID-19/diagnosis , Humans , Mitochondrial Diseases , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry , Ubiquinone/metabolism , Post-Acute COVID-19 Syndrome
19.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.16.496324

ABSTRACT

Neurological effects of COVID-19 and long-COVID-19 as well as neuroinvasion by SARS-CoV-2 still pose several questions and are of both clinical and scientific relevance. We described the cellular and molecular effects of the human brain microvascular endothelial cells (HBMECs) in vitro infection by SARS-CoV-2 to understand the underlying mechanisms of viral transmigration through the Blood-Brain Barrier. Despite the low to non- productive viral replication, SARS-CoV-2-infected cultures displayed increased apoptotic cell death and tight junction protein expression and immunolocalization. Transcriptomic profiling of infected cultures revealed endothelial activation via NF-{kappa}B non-canonical pathway, including RELB overexpression, and mitochondrial dysfunction. Additionally, SARS-CoV-2 led to altered secretion of key angiogenic factors and to significant changes in mitochondrial dynamics, with increased mitofusin-2 expression and increased mitochondrial networks. Endothelial activation and remodeling can further contribute to neuroinflammatory processes and lead to further BBB permeability in COVID-19.


Subject(s)
Mitochondrial Diseases , Severe Acute Respiratory Syndrome , COVID-19
20.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.06.11.495756

ABSTRACT

We report for the first time the use of experimental electron density (ED) as training data for the generation of drug-like three-dimensional molecules based on the structure of a target protein pocket. Similar to a structural biologist building molecules based on their ED, our model functions with two main components: a generative adversarial network (GAN) to generate the ligand ED in the input pocket and an ED interpretation module for molecule generation. The model was tested on three targets including kinase (HPK1), protease (Covid19-3CL), and nuclear receptor (VDR), and evaluated with a reference dataset composed of over 8,000 compounds that have their activities reported in the literature. The evaluation examined the chemical validity, chemical space distribution-based diversity, and similarity with reference active compounds concerning the molecular structure and pocket-binding mode. Our model can reproduce classical active compounds and can also generate novel molecules with similar binding modes as active compounds, making it a promising tool for library generation supporting high-throughput virtual screening. Our model is available as an online service to academic users via https://edmg.stonewise.cn/#/create .


Subject(s)
Mitochondrial Diseases , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL